Skip to main content

Centralized syslog server

This article will explain installing and configuring a syslog log server in redhat enterprise linux. It'll work in other redhat distributions like centos, fedora etc.

Centralized log server (syslog server)

Suppose we have a server and 10 client machines. And we want to monitor the logs of all those client machines. In situations like this, we will use centralized server as a log server. Whatever events are happening in client machines, the logs will be sent to the server. So that we can monitor all the logs from a centralized server. We make use of syslog service for this.

Configuration of server machine(syslog server)

Service name: syslog
configuration file: /etc/sysconfig/syslog

Steps:

1. Open the /etc/sysconfig/syslog file and add "-r" option to the variable SYSLOGD_OPTIONS as shown below.

[root@server ~]# cat /etc/sysconfig/syslog
# Options to syslogd
# -m 0 disables 'MARK' messages.
# -r enables logging from remote machines
# -x disables DNS lookups on messages recieved with -r
# See syslogd(8) for more details
SYSLOGD_OPTIONS="-r -m 0"
# Options to klogd
# -2 prints all kernel oops messages twice; once for klogd to decode, and
# once for processing with 'ksymoops'
# -x disables all klogd processing of oops messages entirely
# See klogd(8) for more details
KLOGD_OPTIONS="-x"
#
SYSLOG_UMASK=077
# set this to a umask value to use for all log files as in umask(1).
# By default, all permissions are removed for "group" and "other".
[root@server ~]#

2. Restart the syslog service.

[root@server ~]# service syslog restart
Shutting down kernel logger: [ OK ]
Shutting down system logger: [ OK ]
Starting system logger: [ OK ]
Starting kernel logger: [ OK ]
[root@server ~]#

Configuration for client machines

service name: syslog
Configuration file: /etc/syslog.conf

Steps:

1. Open the configuration file /etc/syslog.conf and add an entry to redirect the logs to the remote server.

[root@vm1 ~]# cat /etc/syslog.conf
# Log all kernel messages to the console.
# Logging much else clutters up the screen.
#kern.* /dev/console

*.* @192.168.0.19

# Log anything (except mail) of level info or higher.
# Don't log private authentication messages!
*.info;mail.none;authpriv.none;cron.none /var/log/messages

# The authpriv file has restricted access.
##authpriv.* /var/log/secure

# Log all the mail messages in one place.
mail.* -/var/log/maillog

# Log cron stuff
cron.* /var/log/cron

# Everybody gets emergency messages
*.emerg *

# Save news errors of level crit and higher in a special file.
uucp,news.crit /var/log/spooler

# Save boot messages also to boot.log
local7.* /var/log/boot.log

[root@vm1 ~]#

2. Restart the service

[root@vm1 ~]# service syslog restart
Shutting down kernel logger: [ OK ]
Shutting down system logger: [ OK ]
Starting system logger: [ OK ]
Starting kernel logger: [ OK ]
[root@vm1 ~]#

Checking:

In server open a terminal and watch /var/log/messages and restart syslog service in client. You can see the log from clinet coming to server.

[root@server ~]# tail -f /var/log/messages

Oct 15 14:42:30 vm1 kernel: Kernel logging (proc) stopped.
Oct 15 14:42:30 vm1 kernel: Kernel log daemon terminating.
Oct 15 14:42:31 vm1 exiting on signal 15
Oct 15 14:42:31 vm1 syslogd 1.4.1: restart.
Oct 15 14:42:31 vm1 kernel: klogd 1.4.1, log source = /proc/kmsg started.

Fields in log from remote machine:

Date Hostname Name_of_the_application: Actual_log_message

Comments

Popular posts from this blog

Docker Container Management from Cockpit

Cockpit can manage containers via docker. This functionality is present in the Cockpit docker package. Cockpit communicates with docker via its API via the /var/run/docker.sock unix socket. The docker API is root equivalent, and on a properly configured system, only root can access the docker API. If the currently logged in user is not root then Cockpit will try to escalate the user’s privileges via Polkit or sudo before connecting to the socket. Alternatively, we can create a docker Unix group. Anyone in that docker group can then access the docker API, and gain root privileges on the system. [root@rhel8 ~] #  yum install cockpit-docker    -y  Once the package installed then "containers" section would be added in the dashboard and we can manage the containers and images from the console. We can search or pull an image from docker hub just by searching with the keyword like nginx centos.   Once the Image downloaded we can start a contai

Remote Systems Management With Cockpit

The cockpit is a Red Hat Enterprise Linux web-based interface designed for managing and monitoring your local system, as well as Linux servers located in your network environment. In RHEL 8 Cockpit is the default installation candidate we can just start the service and then can start the management of machines. For RHEL7 or Fedora based machines we can follow steps to install and configure the cockpit.  Following are the few features of cockpit.  Managing services Managing user accounts Managing and monitoring system services Configuring network interfaces and firewall Reviewing system logs Managing virtual machines Creating diagnostic reports Setting kernel dump configuration Configuring SELinux Updating software Managing system subscriptions Installation of cockpit package.  [root@rhel8 ~] #  dnf   install cockpit cockpit-dashboard  -y  We need to enable the socket.  [root@rhel8 ~] #  systemctl enable --now cockpit.socket If firewall is runnin

Containers Without Docker on RHEL/Fedora

Docker is perfectly doing well with the containerization. Since docker uses the Server/Client architecture to run the containers. So, even if I am a client or developer who just wants to create a docker image from Dockerfile I need to start the docker daemon which of course generates some extra overhead on the machine.  Also, a daemon that needs to run on your system, and it needs to run with root privileges which might have certain security implications. Here now the solution is available where we do not need to start the daemon to create the containers. We can create the images and push them any of the repositories and images are fully compatible to run on any of the environment.  Podman is an open-source Linux tool for working with containers. That includes containers in registries such as docker.io and quay.io. let's start with the podman to manage the containers.  Install the package  [root@rhel8 ~] # dnf install podman -y  OR [root@rhel8 ~] # yum